
MA40090 2015/16 Fake exam solutions.

1 Question 1

Part a

Agglomerative hierarchical clustering is a method for producing nested clus-
terings. It proceeds as follows:

1. Begin with all points in individual clusters

2. While the number of clusters is bigger than 1 do

(a) Find the two clusters that are closest together in the sense that
the linkage between them is minimal

(b) Join these two clusters, noting the value of the linkage, which is
used as the height of the join on the dendrogram

The three most common types of linkage are as follows:

• Single linkage d(A,B) = minx∈A,y∈B ‖x− y‖

• Complete linkage d(A,B) = maxx∈A,y∈B ‖x− y‖

• Average linkage d(A,B) = |A|−1|B|−1
∑

x∈A,y∈B ‖x− y‖

The clustering found by cutting the dendrogram at β can be interpreted
as

• Single linkage: For any point in cluster A there is another point in the
same cluster that is at most β units away.
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• Complete linkage: For any point in cluster A, every point in the same
cluster that is at most β units away.

• Average linkage: There is no interpretation for the cut height.

Part b

k-means clustering has the following steps:

1. Randomly assign k points as cluster centres

2. Repeat until convergence:

(a) Update `(·) to assign each point to the cluster associated with
the closest (in Euclidian distance) cluster centre (breaking ties
consistently)

(b) Choose new cluster centres as the centroid of the current cluster,
i.e.

znewi =
1

|Ci|
∑
x∈Ci

x,

where Ci = {x ∈ X : `(x) = i}.

The proof proceeds as follows:

• Assume that steps 2.1 and 2.2 of the algorithm never increase the cost
function. (we will get to this)

• The assignment function `(·) and the centres {zi}ki=1 can only take a
finite number of values (only a finite number of partitions of the data,
every zi must be a mean of a subset of the data)

• The cost function is bounded below by zero

• Ties are broken consistently, so the algorithm cannot oscillate.

• Therefore, the algorithm can only take a finite number of non-decreasing
steps before terminating at a local minimum and if it gives the same
value twice it is necessarily generated by the same clustering.
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The cost function after step 2.1 satisfies

cost =
k∑
i=1

∑
x∈Ci

‖x− zi‖2

=
k∑
i=1

∑
x∈{`(x)=i}

‖x− zi‖2

=
∑
x∈X

min
i∈{1,...,k}

‖x− zi‖2 (1)

≤ cost(C ′1, . . . , C
′
k, z1, . . . , zk)

for any partition {C ′i}ki=1 of X. The equality (1) reflects that step 2.1 chooses
the closest centre and hence minimises the distance.

To see that step 2.2 does not increase the cost function, note that as 2.2
does not change `(·), we can treat it as fixed. The cost function (dropping
the dependence on the partition)

cost(z1, . . . , zk) =
k∑
i=1

∑
x∈Ci

‖x− zi‖2

is quadratic and its gradient is

∇zic = −2
∑
x∈Ci

(x− zi).

Hence the global minimum (+ve second derivative) is found at

zi =
1

|Ci|
∑
x∈Ci

x

and cost(znew1 , . . . , znewk ) ≤ cost(z′1, . . . , z
′
k) for any other set of centres {z′i}ki=1

and hence the objective does not increase.

1.1 Part c

One possible solution occurs when the two clusters form concentric circles,
where the distance between two points in a cluster is always smaller than the
distance between the rings. For full marks you need to point this out.
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2 Question 2

Part a

The first principle component is the unit vector v1 in which the sample
variance of xTv is maximised. Assume the data is centred, then the sample
variance of xTv is

1

n− 1

n∑
i=1

vTi xx
T
i v = ‖Xv‖22 ,

where X is the n× p matrix with the ith row containing xTi . Hence the first
principle component maximises ‖Xv‖2 over all unit vectors v, which means
that v1 is the eigenvector corresponding to the first eigenvalue of the sample
covariance matrix Σ̂ = (n− 1)−1XTX.

The second principle component is the unit vector v2 that is orthogonal
to v1 that maximises the sample of variance of xTv. This can be interpreted
as maximising the variance over all directions that are “independent” of v1.
It is given by the second eigenvector of the sample covariance matrix.

Part b

The total sample variance for the data set X is defined as tr(σ̂) =
∑n

i=1 σ
2
i

by definition. The sample variance in the direction of the jth principal
component vj is ‖Xvj‖22 = λj using the results in part a.

Part c

For any clustering {C1, . . . , Ck}, let A ∈ Rn×k be the cluster indicator
matrix with

Aij =

{
|Cj|−1/2, xi ∈ Cj
0, otherwise

.

The ith row of AATX is the cluster centre xi is assigned to and hence, the
k-means cost function can be written as

k∑
i=1

∑
x∈Ci

‖x− zi‖22 =
∥∥X −AATX

∥∥2
F
.
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On the other hand, we recall that if we write Xk = U kΣkV
T
k , where the

k subscript indicates that only the first k singular values/vectors are used,
then

Xk = arg min
rank(B)=k

‖X −B‖2 = arg min
rank(B)=k

‖X −B‖F .

Hence both problems minimise the same objective function. The differ-
ence is that while PCA minimises over the full set of all orthogonal matrices,
k-means optimises over a discrete subset of cluster indicator matrices.

Part d

We replace the features x with the extended features Φ(x) for some feature
map Φ(·). We can then proceed as normal. Assume that the data is centred
on the extended feature space (i.e.

∑n
i=1 Φ(xi) = 0) and define Σ̂ = (n −

1)−1
∑n

i=1 Φ(xi)Φ(xi)
T and then the first principal component is

v = arg max
v

vT Σ̂v

vTv
.

This is equivalent to finding the largest (λ, v) such that (n−1)−1
∑n

i=1 Φ(xi)Φ(xi)
Tv =

λv. Examining this equation, it’s clear that we can find real numbers {αi}nj=1

such that v =
∑n

j=1 αjΦ(xj). Hence, we want to find (λ,α) such that

(n− 1)−1
n∑
i=1

n∑
j=1

αj
(
Φ(xi)

TΦ(xj)
)

Φ(xi) = λ
n∑
j=1

αjΦ(xj)

(n− 1)−1
n∑
i=1

n∑
j=1

αjK(xi,xj)Φ(xi) = λ
n∑
j=1

αjΦ(xj).

For any xk in the training set, we multiply the previous equation on the left
by Φ(xk)

T and get

(n− 1)−1
n∑
i=1

n∑
j=1

αjK(xi,xj)K(xi,xk) = λ
n∑
j=1

αjK(xj,xk).

Examining this equation closely, and defining the kernel matrix K by Kij =
K(xi,xj), this is equivalent to

(n− 1)−1K2α = λKα.
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This means that we can find the first kernelised principal component by
finding the largest eigenpair of the Kernel matrix K.

The RKHS in this case contains the set of all possible principal compo-
nents.

3 Question 3

Part a

It is enough to show that for any other classifier h,

Pr(Y 6= h(X) |X = x)− Pr(Y 6= h∗(X) |X = x) ≥ 0.

Now,

Pr(Y 6= h(X) |X = x) = 1− Pr(Y = h(X) |X = x)

= 1−
1∑

k=0

Pr(Y = k, h(X) = k |X = x)

= 1−
1∑

k=0

Pr (Y = k |X = x, h(X = k)) Pr(h(X) = k |X = x).

Under the event {X = x}, h(X) = h(x) is a deterministic function, so
Pr(h(X) = k | X = x) = 1 or 0 which implies the events {h(X) = k | X =
x} and {Y = k | X = x} are conditionally independent (by definition of
independence!). Furthermore, Pr(h(X) = 1 |X = x) = h(x). Therefore

Pr(Y 6= h(X) |X = x) = 1− [m(x)h(x) + (1− h(x))(1−m(x))] .

Hence

Pr(Y 6= h(X) |X = x)− Pr(Y 6= h∗(X) |X = x)

= − [m(x)h∗(x) + (1− h∗(x))(1−m(x))]

− [m(x)h(x) + (1− h(x))(1−m(x))]

= 2

(
m(x)− 1

2

)
(h∗(x)− h(x)).

When m(x) > 1/2, h∗(x) = 1 and so both terms are non-negative. Hence
the result.
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Part b

Linear discriminant analysis and logistic regression have three main differ-
ences. The first is that LDA is based on a full generative model for the fea-
tures and labels, that is it posits a joint distribution Fx,y, whereas logistic re-
gression only models the required conditional distribution π(y = k |X = x).
The second is that when the data is linearly separable, the estimates of the
coefficients in logistic regression explode to infinity, while LDA remains well
behaved. The final difference is that LDA can be computed using explicit
formulas for each of the terms, while logistic regression requires numerical
optimisation of the log-likelihood function.

Part c

The likelihood is given by

L(β0,β) =
∏

i = 1np(xi)
yi)(1− p(xi))1−yi

=
n∏
i=1

(
eβ0+x

T
i β

1 + eβ0+x
T
i β

)yi (
1

1 + eβ0+x
T
i β

)1−yi

=
n∏
i=1

eyi(β0+x
T
i β)

1 + eβ0+x
T
i β
.

Assume that (β0,β) are such that the decision boundary β0 + xTβ = 0 per-
fectly separates the data Then it follows that, for any c > 0, the parameters
(cβ0, cβ) will also perfectly separate the data. When yi = 1, by assumption,
ti(c) = c(β0 + xTi β) > 0 and hence its contribution to the likelihood

eti(c)

1 + eti(c)
= 1− 1

1 + eti(c)

is an increasing function of c. Similarly, when yi = 0, by assumption, ti(c) =
c(β0 + xTi β) < 0 and hence its contribution to the likelihood

1

1 + eti(c)

is an increasing function of c. Hence there is no maximum likelihood estima-
tor for (β0,β) when the data is linearly separable.
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Part d

For any classification function h, the expected loss can be is given directly as

R(h) = αFN Pr(h(x) = 0, y = 1 | X = x) + αFP Pr(h(x) = 1, y = 0 | X = x)

= αFN Pr(y = 1 | X = x, h(x) = 0) Pr(h(x) = 0 | X = x)

+ αFP (1− Pr(y = 1 | X = x, h(x) = 1)) Pr(h(x) = 1 | X = x).

Following the solution to Part (a) and writing m(x) = Pr(y = 1 | X = x),
we can write this as

R(h) = αFNm(x)(1− h(x)) + αFP (1−m(x))h(x).

Let h∗ be the optimal classifier. Then for any other rule h,

R(h∗)−R(h) = −αFNm(x)h∗(x) + αFPh
∗(x)− αFPm(x)h∗(x)

+ αFNm(x)h(x)− αFPh(x) + αFPm(x)h(x)

= (h∗(x)− h(x)) [αFP − (αFN + αFP )m(x)]

= (αFN + αFP )(h∗(x)− h(x))

(
αFP

αFN + αFP
−m(x)

)

If h∗ is optimal, then R(h∗)−R(h) ≤ 0. Clearly, the classifier

h∗(x) =

{
1, m(x) > αFP

αFN

0, otherwise

satisfies this requirement.

4 Question 4

Part a

The support vector classifier can be written as

min
β0,β,ξ

1

2
‖β‖2 + C

n∑
i=1

ξi

Subject to:

yi(β0 + xTi β) ≥ 1− ξi
ξi ≥ 0
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To derive the dual form, we first need to form the Lagrangian

L(β0,β, ξ,α,µ) =
1

2
‖β‖2+C

n∑
i=1

ξi+
n∑
i=1

αi
(
1− ξi − yi(β0 + xTi β)

)
−

n∑
i=1

µiξi.

We derive the dual problem by maximising the Lagrangian with respect to
the primal variables β0, β0 and ξ.

Maximising w.r.t. β0 Solving ∂L
∂β0

= 0 yields
∑n

i=1 αiyi = 0.

Maximising w.r.t. β Solving ∇βL = 0 we get

∂L

∂βj
= βj −

n∑
i=1

αiyixi = 0

and hence β =
∑n

i=1 αiyixi.

Maximising w.r.t. ξ Solving ∇ξL = 0 we get

∂L

∂ξj
= C − αj − µj = 0

which implies that µ = C −α.

The dual Lagrangian Substituting these in we get

LD(α,µ) = max
ξ,β,β0

L(β0,β, ξ,α,µ)

=
1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
T
i xj + C

n∑
i=1

ξi +
n∑
i=1

αi −
∑
i=1n

αiξi − β0
n∑
i=1

αiyi

−
n∑
i=1

n∑
j=1

αiαjyiyjx
T
i xj − C

n∑
i=1

ξi +
n∑
i=1

αiξi

=
n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
T
i xj
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Complementary slackness As the primal constraints are linear, this
problem does not have a duality gap (i.e. the minimum value obtained by the
primal problem is the same as the maximum value obtained by the dual prob-
lem) and hence we have complementary slackness conditions at the optimal
points

αi
(
1− ξi − yi(β0 + xTi β)

)
= 0

µiξi = 0.

The first condition says that when the strict form of the primal constraint
yi(β0 +xTi β > 1− ξi is satisfied, then αi must be zero. Only when the point
xi either lies on or on the wrong side of the separating hyperplane, can we
have αi ≥ 0. The second condition implies (C−αi)ξi = 0, so either ξi = 0, in
which case the margin is not violated, or αi = C when the margin is violated.

This means that only the points that are either on the separating hy-
perplanes or on the wrong side of them contribute to the solution of the
SVC.

The dual problem The dual problem can finally be stated as

max
λ

n∑
i=1

λi −
1

2

n∑
i=1

n∑
j=1

λiλjyiyjx
T
j xi

Subject to:

λi
[
(1− ξi)− yi(β0 + xTi β)

]
= 0, i = 1, . . . , n,

n∑
i=1

λiyi = 0,

µiξi = 0, i = 1, . . . , n,

0 ≤ µi ≤ C, i = 1, . . . , n,

λ ≥ 0.

Part b (Not examinable 2015/16)

The k-nearest neighbours method for classifying a point x into a class label
in {1, 2, . . . , K} finds the k training points that are closest to x, finds the
most common label (breaking ties consistently), and assigns that label to x.
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Part c

A Reproducing Kernel Hilbert space H(K) is a complete inner product space
(i.e. a linear vector space with an inner product 〈·, ·〉H(K) such that any
sequence that converges in the norm defined through the inner product has
a limit in H) containing functions defined on X with the property that the
value of the function at any point is finite. This implies, and is implied
by, the existence of a Kernel function K(·, ·), such that, for any x ∈ X ,
K(·, x) ∈ H(K). This kernel function has the reproducing property

f(x) = 〈f,K(·, x)〉H(K) .

The support vector machines can be written as

min
f∈H(K)

n∑
i=1

max{0, yif(xi)}+ λ ‖f‖H(K) ,

where λ = (2C)−1, where C is the constant in the C
∑n

i=1 ξi term in the
primal formulation of the SVM. Hence a large C means we don’t penalise
big values of ‖f‖H(K) too much and hence leads to a very wiggly function.
This makes sense as a large C penalises misclassification strongly.

Part d

There are many answers to this question. An example would be the case
where the Naive Bayes assumption does not hold, i.e. we cannot assume that
the features and labels are drawn i.i.d from some distribution Fx,y. When
this distribution changes, it is not possible to assume that the model fitted
on the validation set is still a decent model of reality.
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