
Week 8 solutions

1 Question 1

Part a

An example of a loss function for linear regression is L(β, x, y) = (y−xTβ)2.
And example of a loss function for classification is L(h(·), y, x) = I(h(x) 6= y).

Part b

It would be ok to generalize a machine learning model fitted on students in
STA314 to predict things about statistics majors at the University of Toronto
only if the students in STA314 were representative of the general stats major
population. Otherwise, the model may over-fit to idiosyncratic features of
the STA314 cohort that are not present in the larger group. This is because
machine learning methods do not extrapolate.

2 Question 2

Part a

Single Linkage: All calculations are based on nearest neighbours.

(i) First Merge: From inspection of the squared distance matrix, there are
two pairs of nearest neighbours: 51 and 53 and 52 and 101. So the first
merge results in the clusters,

(51, 53), (52, 101), (102), (103).
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(ii) Second Merge: The next smallest squared distance is 0.05 between 51
and 103 and also 53 and 103, and resulting in 103 being merged with
(51,53). The clusters are now

(51, 53, 103), (52, 101), (102).

(iii) Third Merge: The next smallest distance is 0.26 between 52 and 53 ans
so (51,53,103) are merged with (52,101).The clusters are now

(51, 52.53.101, 103), (102).

(iv) Fourth Merge: The shortest squared distance between 102 and the rest
is 0.61,(both 52 and 101) and so all observations are merged into one
cluster at this height.

Complete Linkage: We have slightly more complicated calculations as
distances between clusters are measured by furthest neighbours.

(i) First Merge: This is identical to that for single linkage above as all
clusters start as individual observations. So the clusters are

(51, 53), (52, 101), (102), (103).

(ii) Second Merge: We now need to find the distances between furthest
neighbours in all pairs of the above clusters. Extracting the relevant
information we find,

51 53
52 0.36 0.26

101 0.5 0.4

51 53
102 1.69 1.37

51 53
103 0.05 0.05

52 101
102 0.61 0.61

52 101
103 0.53 0.73

102
103 1.78

The distances between furthest neighbours are in bold and we see that
the smallest of these is 0.05 between (51,53) and (103) and so we merge
these to obtain the clusters

(51, 53, 103), (52, 101), (102).
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(iii) Third Merge: Repeating the above procedure on our current clusters,
51 53 103

52 0.36 0.26 0.53
101 0.5 0.4 0.73

51 53 103
102 1.69 1.37 1.78

52 101
102 0.61 0.61

The shortest squared distance between furthest neighbours is 0.61 be-
tween both 52 and 102 and also 101 and 102 and so our next clustering
is

(51, 53.103), (52, 101, 102).

(iv) Fourth Merge: The two remaining clusters are merged at the height
of their furthest neighbour which we see from the table below is 1.78.

51 53 103
52 0.36 0.26 0.53

101 0.5 0.4 0.73
102 1.69 1.37 1.78

The resulting dendrograms should look something like:
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From these we can see that at height 0.5, single linkage leads to clus-
ters {51,52,53,101,103} and {102} and complete linkage leads to clusters
{51,53,103}, {52,101} and {102}.

Part b

The above figure is an example where
the data has four natural cluster that have been badly classified using k-
means. The problem is that the three of the initial cluster centres were on
the right hand side of the plot, which means that all of the points on the
left were forced into the same cluster. The k-means++ algorithm tries to
prevent this happening by attempting to choose initial cluster centres that
are as far apart from each other as possible. This would make it unlikely for
three initial cluster centres to end up on the same side of the rectangle in the
above figure.

3 Question 3

Part a

• Linearity. Plot the residuals and look for nonlinearities

• Independent error. Plot the residuals and look for evidence of serial
correlation

• Identically distributed errors. Look at the plot of the residuals and
check for changes in variances (heteroskedasticity)

• Normality of errors. A histogram, and empirical CDF or a QQ-Plot.
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Part b

Let A = uvT . Then the eigenvalue equation Ax = λx becomes

Ax = λx

uvTx = λx

(vTx)u = λx. (1)

Now, vTx and λ are both scalars, so the only way the final vector equality
can hold is if x = αu, for some α ∈ R. By convention, eigenvectors have unit
norm, so the eigenvector is

x =
u

‖u‖
.

Substituting that into (1), we get

vTu

‖u‖
u =

λ

‖u‖
u,

which implies λ = vTu. To show that this is the largest eigenvector (in
absolute value), we note that if we choose x to be any of the n− 1 vectors w
that satisfy vTw = 0, then Ax = λx simplifies to 0 · w = λw, which implies
that all of the other eigenvalues of A are zero.

4 Question 4

Part a

We want to find the direction that explains the **third** largest amount
of information. Given that we already know the first two PCs, we don’t
need to explain any more information in those particular directions, so we’re
only interested in directions that are **orthogonal** to v1 and v2. From the
lectures, we know that the variance in a direction u is given by

(n− 1)−1‖Xu‖

, so we need to solve the following optimization problem

v24 = arg max
uT v1=0
uT v2=0
‖u‖=1

uTXTXu = arg max
uT v1=0
uT v2=0

uTXTXu

uTu
.
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Following the same reasoning as the lectures, we compute the eigende-
composition XTX = V ΛV T and set z = V Tu. Because u ⊥ v1, v2, the first
two components of z will be zero. Then it follows that

uTXTXu = zTΛz =

p∑
i=1

λiz
2
i =

p∑
i=3

λiz
2
i ≤ λ3

p∑
i=3

z2i = λ3u
TV V Tu = λ3u

Tu.

As in class, that inequality is an equality if z4 = z5 = . . . = zp = 0, which
occurs when u = v3. As we have shown that the Rayleigh quotient cannot be
larger than λ3 when computed on vectors that are orthogonal to v1 and v2
**and** that value is attained when u = v3, it follows that v3 maximizes the
constrained Rayleigh quotient and hence the second principal component is
the eigenvector of XTX that corresponds to the second largest eigenvalue.

Part b

In forward variable selection you start with a model that only has an inter-
cept. At each step you add the feature that maximizes the prediction error
on the test set. Continue until all features have been added.

In backward variable selection, you start with a model that has all the
features in it. At each step you remove the feature that reduces the prediction
error the least on the test set. Continue until there are no features left.

Forwards selection is preferable if there are more features than observa-
tions.
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