
Homework #1 STA410H1F/2102H1F

due Wednesday October 3, 2018 at 11:59pm

Instructions: Solutions to problems 1 and 2 are to be submitted via Quercus and only

PDF files will be accepted. You are strongly encouraged to do problems 3 and 4 but these

are not to be submitted for grading.

1. Suppose that Z is an m × n pixel image where m = 2k and n = 2`. If Hm and Hn are

m×m and n× n Hadamard matrices then we can define the Walsh-Hadamard tranform of

Z by

Ẑ = HmZHn.

In this problem, we will explore using this Walsh-Hadamard transform to denoise an image.

(a) Show that Z = HmẐHn/(mn). (This gives the inverse Walsh-Hadamard transform.)

(b) To denoise an image using the Walsh-Hadamard transform, we first compute Ẑ and then

perform hard- or soft-thresholding to obtain a thresholded (or shrunken) transform Ẑ∗ (which

will typically be “sparser” than Ẑ). Our hope is that the components of Ẑ corresponding

to noise in the image are eliminated and so the denoised image can be obtained by applying

the inverse transform to Ẑ∗.

Using an R function fwht2d (available on Quercus) to compute the Walsh-Hadamard trans-

form, write R functions to perform both hard- and soft-thresholding (dependent on a pa-

rameter λ).

(c) The file boats.txt contains a noisy 256 × 256 pixel grayscale image of sailboats. Its

entries are numbers between 0 and 1 where 0 represents black and 1 represents white. The

data can be read into R and displayed as an image as follows:

> boats <- matrix(scan("boats.txt"),ncol=256,byrow=T)

> image(boats, axes=F, col=grey(seq(0,1,length=256)))

Using your functions from part (b), try to denoise the image as best as possible. (This is

quite subjective but try different methods and parameter values.)

Note: You should not expect your noise-reduced image to be a drastic improvement over

noisy image; in fact, connaisseurs of pointillism may find prefer the noisy image. There

are two issues here: First, we are applying noise reduction to the whole image rather than

dividing the image into smaller sub-images and applying noise reduction to each sub-image.

Second, even very good noise reduction tend to wash out finer details, thereby rendering the

noise-reduced image less visually appealing.



2. Suppose that X1, X2, · · · is an infinite sequence of independent identically distributed

random variables with some distribution function F and N is a Poisson distribution with

mean λ that is independent of the sequence {Xi}. Then we can define a compound Poisson

random variable Y by

Y =
N∑
i=1

Xi

where Y = 0 if N = 0. This distribution arises naturally in risk theory and insurance – for

example, if N represents the number of claims and X1, X2, · · · the amounts paid for each

claim then Y is the total sum paid. For the purposes of risk management, it is useful to

know the distribution of Y , particularly its tail.

(a) Suppose that {Xi} are discrete integer-valued random variables with probability gener-

ating function φ(s) = E(sXi). Show that the probability generating function of Y is g(φ(s))

where g(s) is the probability generating function of N , which is given by

g(s) = exp(−λ(1− s)).

(b) The distribution of Y can be approximated using the Fast Fourier Transform. Assume

that the random variables {Xi} have a distribution p(x) on the integers 0, 1, · · · , `. The

complication is that, unlike the distribution of S = X1 + · · · + Xn, the distribution of Y is

not concentrated on a finite set of integers. Therefore, we need to find an integer M such

that P (Y ≥ M) is smaller than some pre-determined threshold ε; M will depend on the

Poisson mean λ as well as the integer ` (or more precisely, the distribution p(x)). (Also

to optimize the FFT algorithm, M should be a power of 2 although this isn’t absolutely

necessary unless M is very large.) Show that if P (N ≥ m) ≤ ε then P (Y ≥ m`) ≤ ε and so

we can take M ≥ m`.

(c) The bound M determined in part (b) is typically very conservative and can be decreased

substantially. One approach to determining a better bound is based on the probability

generating function of Y derived in part (a) and Markov’s inequality. Specifically, if s > 1

we have

P (Y ≥M) = P (sY ≥ sM) ≤ E(sY )

sM
=

exp(−λ(1− φ(s)))

sM
.

Use this fact to show that for P (Y ≥M) < ε, we can take

M = inf
s>1

− ln(ε)− λ(1− φ(s))

ln(s)
.

(d) Given M (which depends on ε), the algorithm for determining the distribution of Y goes

as follows:

1. Evaluate the DFT of {p(x) : x = 0, · · · ,M − 1}:

p̂(j) =
M−1∑
x=0

exp
(
−2πι

j

M
x
)
p(x)

where p(`+ 1) = · · · = p(M − 1) = 0.



2. Evaluate g(p̂(j)) = exp(−λ(1− p̂(j))) for j = 0, · · · ,M − 1.

3. Evaluate P (Y = y) by computing the inverse FFT:

P (Y = y) =
1

M

M−1∑
j=0

exp
(

2πι
y

M
j
)
g(p̂(j))

Write an R function to implement this algorithm where M is determined using the method

in part (c) with ε = 10−5. Use this function to evaluate the distribution of Y in the case

where λ = 3 and the distribution of {Xi} is

p(x) = P (Xi = x) =
11− x

66
for x = 0, · · · , 10.

(You do not need to evaluate the bound M from part (c) with great precision; for example,

a simple approach is to take a discrete set of points S = {1 < s1 < s2 < · · · < sk} and define

M = min
s∈S

− ln(ε)− λ(1− φ(s))

ln(s)

where δ = si+1 − si and sk are determined graphically (that is, by plotting the appropriate

function) so that you are convinced that the value of M is close to the actual infimum.

On Blackboard, there is a paper by Embrechts and Frei “Panjer recursion versus FFT for

compound distributions”, which (not surprisingly) compares the FFT approach to alterna-

tive approach (Panjer recursion). This paper includes some R code for the FFT algorithm

described above and discusses some modifications to the basic FFT algorithm – feel free to

use this R code as a template for your function. (Feel free to explore some of the other

aspects of this paper for your own edification.)



Supplemental problems (not to hand in):

3. An alternative to the Quicksort algorithm is Mergesort (see p. 122 of the text). The

Mergesort algorithm works by merging pairs of ordered lists. If the two lists contain r and

s elements, respectively, then the number of comparisons needed to merge the two lists into

single list lies between min(r, s) and r + s− 1.

Define C(n) to be the (random) number of comparisons in the Mergesort algorithm. It can

be shown that the expected number of comparisons, E[C(n)] satisfies the recursive formula

E[C(n)] = E(Zn) + E[C(bn/2c)] + E[C(dn/2e)]

where bn/2c = dn/2e = n/2 if n is even with bn/2c = (n − 1)/2, dn/2e = (n + 1)/2 if n is

odd, and Zn is a random variable whose distribution is

P (Zn = k) =

(
k − 1

bn/2c − 1

)
+

(
k − 1

dn/2e − 1

)
(

n

bn/2c

) for bn/2c ≤ k ≤ n− 1

and whose expected value is

E(Zn) = bn/2cdn/2e
(

1

bn/2c+ 1
+

1

dn/2e+ 1

)

(Zn represents the number of comparisons needed to merge two ordered lists of lengths bn/2c
and dn/2e, respectively.)

(a) In class, we derived the following recursive formula for E[C(n)] for the Quicksort algo-

rithm:

E[C(n)] = n− 1 +
2

n

n∑
k=1

E[C(k − 1)]

where E[C(0)] = E[C(1)] = 0. Using R, compute E[C(n)] for n = 1, · · · , 1000 and compare

the average performance of Quicksort to that of Mergesort.

(b) Calculate the worst case behaviour of C(n) for Mergesort.

4. As noted in lecture, catastrophic cancellation in the subtraction x− y can occur when x

and y are subject to round-off error. Specifically, if fl(x) = x(1+u) and fl(y) = y(1+v) then

fl(x)− fl(y) = x− y + (xu− yv)

where the absolute error |xu− yv| can be very large if both x and y are large; in some cases,

this error may swamp the object we are trying to compute, namely x − y, particularly if



|x − y| is relatively small compared to |x| and |y|. For example, if we compute the sample

variance using the right hand side of the identity

n∑
i=1

(xi − x̄)2 =
n∑

i=1

x2i −
1

n

(
n∑

i=1

xi

)2

, (1)

a combination of round-off errors from the summations and catastrophic cancellation in the

subtraction may result in the computation of a negative sample variance! (In older versions of

Microsoft Excel, certain statistical calculations were prone to this unpleasant phenomenon.)

In this problem, we will consider two algorithms for computing the sample variances that

avoid this catastrophic cancellation. Both are “one pass” algorithms, in the sense that we

only need to cycle once through the data (as is the case if we use the right hand side of (1));

to use the left hand side of (1), we need two passes since we need to first compute x̄ before

computing the sum on the left hand side of (1). In parts (a) and (b) below, define x̄k be the

sample mean of x1, · · · , xk and note that

x̄k+1 =
k

k + 1
x̄k +

1

k + 1
xk+1

with x̄ = x̄n.

(a) Show that
n∑

i=1

(xi − x̄)2 can be computed using the recursion

k+1∑
i=1

(xi − x̄k+1)
2 =

k∑
i=1

(xi − x̄k)2 +
k

k + 1
(xk+1 − x̄k)2

for k = 1, · · · , n− 1. (This is known as West’s algorithm.)

(b) A somewhat simpler one-pass method replaces x̄ by some estimate x0 and then corrects

for the error in estimation. Specifically, if x0 is an arbitrary number, show that

n∑
i=1

(xi − x̄)2 =
n∑

i=1

(xi − x0)2 − n(x0 − x̄)2.

(c) The key in using the formula in part (b) is to choose x0 to avoid catastrophic cancellation,

that is, x0 should be close to x̄. How might you choose x0 (without first computing x̄) to

minimize the possibility of catastrophic cancellation? Ideally, x0 should be calculated using

o(n) operations.

(An interesting paper on computational algorithms for computing the variance is “Algorithms

for computing the sample variance: analysis and recommendations” by Chan, Golub, and

LeVeque; this paper is available on Quercus.)


