Homework \#1 STA410H1F/2102H1F

due Wednesday October 3, 2018 at 11:59pm

Instructions: Solutions to problems 1 and 2 are to be submitted via Quercus and only PDF files will be accepted. You are strongly encouraged to do problems 3 and 4 but these are not to be submitted for grading.

1. Suppose that Z is an $m \times n$ pixel image where $m=2^{k}$ and $n=2^{\ell}$. If H_{m} and H_{n} are $m \times m$ and $n \times n$ Hadamard matrices then we can define the Walsh-Hadamard tranform of Z by

$$
\widehat{Z}=H_{m} Z H_{n} .
$$

In this problem, we will explore using this Walsh-Hadamard transform to denoise an image.
(a) Show that $Z=H_{m} \widehat{Z} H_{n} /(m n)$. (This gives the inverse Walsh-Hadamard transform.)
(b) To denoise an image using the Walsh-Hadamard transform, we first compute \widehat{Z} and then perform hard- or soft-thresholding to obtain a thresholded (or shrunken) transform \widehat{Z}^{*} (which will typically be "sparser" than \widehat{Z}). Our hope is that the components of \widehat{Z} corresponding to noise in the image are eliminated and so the denoised image can be obtained by applying the inverse transform to \widehat{Z}^{*}.
Using an R function fwht2d (available on Quercus) to compute the Walsh-Hadamard transform, write R functions to perform both hard- and soft-thresholding (dependent on a parameter λ).
(c) The file boats.txt contains a noisy 256×256 pixel grayscale image of sailboats. Its entries are numbers between 0 and 1 where 0 represents black and 1 represents white. The data can be read into R and displayed as an image as follows:

```
> boats <- matrix(scan("boats.txt"),ncol=256,byrow=T)
```

> image(boats, axes=F, col=grey(seq(0,1,length=256)))

Using your functions from part (b), try to denoise the image as best as possible. (This is quite subjective but try different methods and parameter values.)

Note: You should not expect your noise-reduced image to be a drastic improvement over noisy image; in fact, connaisseurs of pointillism may find prefer the noisy image. There are two issues here: First, we are applying noise reduction to the whole image rather than dividing the image into smaller sub-images and applying noise reduction to each sub-image. Second, even very good noise reduction tend to wash out finer details, thereby rendering the noise-reduced image less visually appealing.
2. Suppose that X_{1}, X_{2}, \cdots is an infinite sequence of independent identically distributed random variables with some distribution function F and N is a Poisson distribution with mean λ that is independent of the sequence $\left\{X_{i}\right\}$. Then we can define a compound Poisson random variable Y by

$$
Y=\sum_{i=1}^{N} X_{i}
$$

where $Y=0$ if $N=0$. This distribution arises naturally in risk theory and insurance - for example, if N represents the number of claims and X_{1}, X_{2}, \cdots the amounts paid for each claim then Y is the total sum paid. For the purposes of risk management, it is useful to know the distribution of Y, particularly its tail.
(a) Suppose that $\left\{X_{i}\right\}$ are discrete integer-valued random variables with probability generating function $\phi(s)=E\left(s^{X_{i}}\right)$. Show that the probability generating function of Y is $g(\phi(s))$ where $g(s)$ is the probability generating function of N, which is given by

$$
g(s)=\exp (-\lambda(1-s))
$$

(b) The distribution of Y can be approximated using the Fast Fourier Transform. Assume that the random variables $\left\{X_{i}\right\}$ have a distribution $p(x)$ on the integers $0,1, \cdots, \ell$. The complication is that, unlike the distribution of $S=X_{1}+\cdots+X_{n}$, the distribution of Y is not concentrated on a finite set of integers. Therefore, we need to find an integer M such that $P(Y \geq M)$ is smaller than some pre-determined threshold $\epsilon ; M$ will depend on the Poisson mean λ as well as the integer ℓ (or more precisely, the distribution $p(x)$). (Also to optimize the FFT algorithm, M should be a power of 2 although this isn't absolutely necessary unless M is very large.) Show that if $P(N \geq m) \leq \epsilon$ then $P(Y \geq m \ell) \leq \epsilon$ and so we can take $M \geq m \ell$.
(c) The bound M determined in part (b) is typically very conservative and can be decreased substantially. One approach to determining a better bound is based on the probability generating function of Y derived in part (a) and Markov's inequality. Specifically, if $s>1$ we have

$$
P(Y \geq M)=P\left(s^{Y} \geq s^{M}\right) \leq \frac{E\left(s^{Y}\right)}{s^{M}}=\frac{\exp (-\lambda(1-\phi(s)))}{s^{M}}
$$

Use this fact to show that for $P(Y \geq M)<\epsilon$, we can take

$$
M=\inf _{s>1} \frac{-\ln (\epsilon)-\lambda(1-\phi(s))}{\ln (s)}
$$

(d) Given M (which depends on ϵ), the algorithm for determining the distribution of Y goes as follows:

1. Evaluate the DFT of $\{p(x): x=0, \cdots, M-1\}$:

$$
\widehat{p}(j)=\sum_{x=0}^{M-1} \exp \left(-2 \pi \iota \frac{j}{M} x\right) p(x)
$$

where $p(\ell+1)=\cdots=p(M-1)=0$.
2. Evaluate $g(\widehat{p}(j))=\exp (-\lambda(1-\widehat{p}(j)))$ for $j=0, \cdots, M-1$.
3. Evaluate $P(Y=y)$ by computing the inverse FFT:

$$
P(Y=y)=\frac{1}{M} \sum_{j=0}^{M-1} \exp \left(2 \pi \iota \frac{y}{M} j\right) g(\widehat{p}(j))
$$

Write an R function to implement this algorithm where M is determined using the method in part (c) with $\epsilon=10^{-5}$. Use this function to evaluate the distribution of Y in the case where $\lambda=3$ and the distribution of $\left\{X_{i}\right\}$ is

$$
p(x)=P\left(X_{i}=x\right)=\frac{11-x}{66} \quad \text { for } x=0, \cdots, 10 .
$$

(You do not need to evaluate the bound M from part (c) with great precision; for example, a simple approach is to take a discrete set of points $\mathcal{S}=\left\{1<s_{1}<s_{2}<\cdots<s_{k}\right\}$ and define

$$
M=\min _{s \in \mathcal{S}} \frac{-\ln (\epsilon)-\lambda(1-\phi(s))}{\ln (s)}
$$

where $\delta=s_{i+1}-s_{i}$ and s_{k} are determined graphically (that is, by plotting the appropriate function) so that you are convinced that the value of M is close to the actual infimum.

On Blackboard, there is a paper by Embrechts and Frei "Panjer recursion versus FFT for compound distributions", which (not surprisingly) compares the FFT approach to alternative approach (Panjer recursion). This paper includes some R code for the FFT algorithm described above and discusses some modifications to the basic FFT algorithm - feel free to use this R code as a template for your function. (Feel free to explore some of the other aspects of this paper for your own edification.)

Supplemental problems (not to hand in):

3. An alternative to the Quicksort algorithm is Mergesort (see p. 122 of the text). The Mergesort algorithm works by merging pairs of ordered lists. If the two lists contain r and s elements, respectively, then the number of comparisons needed to merge the two lists into single list lies between $\min (r, s)$ and $r+s-1$.
Define $C(n)$ to be the (random) number of comparisons in the Mergesort algorithm. It can be shown that the expected number of comparisons, $E[C(n)]$ satisfies the recursive formula

$$
E[C(n)]=E\left(Z_{n}\right)+E[C(\lfloor n / 2\rfloor)]+E[C(\lceil n / 2\rceil)]
$$

where $\lfloor n / 2\rfloor=\lceil n / 2\rceil=n / 2$ if n is even with $\lfloor n / 2\rfloor=(n-1) / 2,\lceil n / 2\rceil=(n+1) / 2$ if n is odd, and Z_{n} is a random variable whose distribution is

$$
P\left(Z_{n}=k\right)=\frac{\binom{k-1}{\lfloor n / 2\rfloor-1}+\binom{k-1}{\lceil n / 2\rceil-1}}{\binom{n}{\lfloor n / 2\rfloor}} \text { for }\lfloor n / 2\rfloor \leq k \leq n-1
$$

and whose expected value is

$$
E\left(Z_{n}\right)=\lfloor n / 2\rfloor\lceil n / 2\rceil\left(\frac{1}{\lfloor n / 2\rfloor+1}+\frac{1}{\lceil n / 2\rceil+1}\right)
$$

(Z_{n} represents the number of comparisons needed to merge two ordered lists of lengths $\lfloor n / 2\rfloor$ and $\lceil n / 2\rceil$, respectively.)
(a) In class, we derived the following recursive formula for $E[C(n)]$ for the Quicksort algorithm:

$$
E[C(n)]=n-1+\frac{2}{n} \sum_{k=1}^{n} E[C(k-1)]
$$

where $E[C(0)]=E[C(1)]=0$. Using R, compute $E[C(n)]$ for $n=1, \cdots, 1000$ and compare the average performance of Quicksort to that of Mergesort.
(b) Calculate the worst case behaviour of $C(n)$ for Mergesort.
4. As noted in lecture, catastrophic cancellation in the subtraction $x-y$ can occur when x and y are subject to round-off error. Specifically, if $\mathrm{f}(x)=x(1+u)$ and $\mathrm{fl}(y)=y(1+v)$ then

$$
\mathrm{fl}(x)-\mathrm{f}(y)=x-y+(x u-y v)
$$

where the absolute error $|x u-y v|$ can be very large if both x and y are large; in some cases, this error may swamp the object we are trying to compute, namely $x-y$, particularly if
$|x-y|$ is relatively small compared to $|x|$ and $|y|$. For example, if we compute the sample variance using the right hand side of the identity

$$
\begin{equation*}
\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=\sum_{i=1}^{n} x_{i}^{2}-\frac{1}{n}\left(\sum_{i=1}^{n} x_{i}\right)^{2} \tag{1}
\end{equation*}
$$

a combination of round-off errors from the summations and catastrophic cancellation in the subtraction may result in the computation of a negative sample variance! (In older versions of Microsoft Excel, certain statistical calculations were prone to this unpleasant phenomenon.) In this problem, we will consider two algorithms for computing the sample variances that avoid this catastrophic cancellation. Both are "one pass" algorithms, in the sense that we only need to cycle once through the data (as is the case if we use the right hand side of (1)); to use the left hand side of (1), we need two passes since we need to first compute \bar{x} before computing the sum on the left hand side of (1). In parts (a) and (b) below, define \bar{x}_{k} be the sample mean of x_{1}, \cdots, x_{k} and note that

$$
\bar{x}_{k+1}=\frac{k}{k+1} \bar{x}_{k}+\frac{1}{k+1} x_{k+1}
$$

with $\bar{x}=\bar{x}_{n}$.
(a) Show that $\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$ can be computed using the recursion

$$
\sum_{i=1}^{k+1}\left(x_{i}-\bar{x}_{k+1}\right)^{2}=\sum_{i=1}^{k}\left(x_{i}-\bar{x}_{k}\right)^{2}+\frac{k}{k+1}\left(x_{k+1}-\bar{x}_{k}\right)^{2}
$$

for $k=1, \cdots, n-1$. (This is known as West's algorithm.)
(b) A somewhat simpler one-pass method replaces \bar{x} by some estimate x_{0} and then corrects for the error in estimation. Specifically, if x_{0} is an arbitrary number, show that

$$
\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=\sum_{i=1}^{n}\left(x_{i}-x_{0}\right)^{2}-n\left(x_{0}-\bar{x}\right)^{2} .
$$

(c) The key in using the formula in part (b) is to choose x_{0} to avoid catastrophic cancellation, that is, x_{0} should be close to \bar{x}. How might you choose x_{0} (without first computing \bar{x}) to minimize the possibility of catastrophic cancellation? Ideally, x_{0} should be calculated using $o(n)$ operations.
(An interesting paper on computational algorithms for computing the variance is "Algorithms for computing the sample variance: analysis and recommendations" by Chan, Golub, and LeVeque; this paper is available on Quercus.)

